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1. Introduction and Preliminaries 

The basis of multiple criteria decision making involves attempting to maximize 
several objectives simultaneously. Usually a single solution does not optimize all of 
the objectives simultaneously. This leads to a set of solutions which are commonly 
called efficient solutions. An outcome is considered to be desirable if no objective 
can be improved without a negative consequence to some other objective. The 
efficient set, E,  is the set of alternatives with desirable outcomes. 

In this work the objective functions are assumed to be linear. Much is known 
about E in this case including numerical methods for generating E when the set of 
alternatives is polyhedral. See [1, 2, 3, 4]. 

One problem that arises in applications is to determine the minimum value that 
each criterion may assume over the set of efficient alternatives. In this work the 
more general problem of maximizing a general function ~ over E is considered. 
In practice it is desirable to solve this problem without generating E.  Because E 
is rarely a convex set, ~ may have local extrema which are not global. Moreover, 
the set where ~ is optimized need not be connected. 

Philip [3] considers the case where ~ is linear and the set of alternatives, X, is 
polyhedral. He presents a simplex-like solution technique and a special case where 
it suffices to maximize ~o over X. Benson [5, 6] extends the problem by allowing 
X to be a closed convex set. He analyzes several aspects of the problem and proves 
numerous results. Various authors [2, 7, 8, 9, 10] have considered the problem of 
minimizing the criterion functions over E.  In particular, the case of minimizing a 
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convex function over E when the constraint set is polyhedra has been studied by 
Bolintineanu [11]. 

Here the case where ~ is an arbitrary continuous function and X is a compact 
convex set is investigated. See also Bolintineanu [12]. In Section 2 a special 
function originally defined by Benson [5] is presented with several of its important 
properties. Section 3 pairs this function with qo to form a biobjective problem whose 
efficient set compares favorably with the solutions to (P). In particular, a penalized 
problem [ 13] is obtained as a scalarization of the biobjective problem. A parametric 
programming technique for solving (P) is developed in this work. In Section 4 it is 
shown that the parametric program can be used to provide an approximate or exact 
solution to (P), depending upon the specific nature of X and ~. It is shown that if 
X is polyhedral and ~ is convex, then the penalty is exact. Numerical aspects are 
discussed in Section 5. 

Given a set S of feasible alternatives and a function f : S --+ R k, the efficient 
set of S with respect to f is defined as follows. 

DEFINITION 1.1. A point z E S is said to be an efficient point of S with respect 
to f if there is no s E S such that f(s) >>. f(x) and f(s) ~ f(x). If such an s E S 
does exist, then f(s) is said to dominate f(x). The efficient set of S with respect 
to f is denoted by E(S, f). 

Let X be a nonempty, compact, convex subset of R n. Let C be a k by n matrix with 
constant coefficients with rows c~, 1 ~< i ~< k. The following vector maximization 
problem corresponds to C and X 

(V) V M A X C x  subject to x E X. 

The solutions of (V) are the elements of E(X, C), which is nonempty. 
For the central problem of this paper, let to be a continuous real valued function 

on X and consider the problem 

(P) sup~(x)  subject to x E E(X,C). 

Let t* denote the supremum of ~(x) subject to x E E(X, C). Notice that t* is finite 
[14]. If X is a polytope, then E(X, C) is compact and, consequently, t* is attained. 
In the nonpolyhedral case E(X, C) is not necessarily closed and the optimal value 
need not be attained (see [15]). 

The approach uses Benson's function g(z) to construct the penalized problem 

(PA) max(1,)~)(!o(x),-g(z))  T subject to x E X. 

If g(X) is continuous, it is shown that the optimal value of (P)~) tends to the 
optimal value of (P) as A goes to infinity. 

A special version of (P) considered in [2, 7, 8, 9, 10] is to solve, for each 
l <~ i <~ k, 

(Pi) infcix subjectto x E E ( X , O ) .  
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In the following it is shown that solving ( ~ )  is equivalent to maximizing a particular 
convex function over X. 

2. Benson's Measurement Function for Efficiency 

In this section a function defined by Benson is examined. This function is known 
to indicate whether or not a point is efficient. Properties are presented which allow 
this function to be regarded as a measurement between a point and the efficient 
set. 

In [5], Benson considers the function 9 : G --+ R given by 

g(x) = max eT Cw -- eT Cx 

(2.1) subject to Cw >. Cx  and w E X 

where G = {x E R n : Cw >/Cx for some w E X} and e = (1, 1 , . . . ,  1) T E R k. 
Let W ( x )  = {w E X : Cw >1 Cx}.  Since X is a compact subset of G, the 
maximum in (2.1) is attained. The function is derived from a modification of 
a mathematical programming problem used to discuss the existence of efficient 
points (e.g., see [1]). The following propositions give properties of the function g 
[6, 14]. 

PROPOSITION 2.1. For all x E G, 9(x) >>- O, and for all x E X it follows that 
9(x) = 0 if  and only if  x E E ( X ,  C). l f  x E G and 9(x) = O, then x is the sum of  
an efficient point and an element of  the null space of  C. 

PROPOSITION 2.2. L e t x  E G. I f w  E X,  Cw >>, Cx and g(x) = e T C ( w -  x), 
then w E E (  X ,  C). That is, for a fixed x the maximum in the mathematical program 
(2.1) can only be attained at an efficient point. 

PROPOSITION 2.3. I f  X is a compact, convex set, then 9 is a concave, upper 
semicontinuous function on G. I f  X is a polytope, then 9 is a continuous piecewise 
linear function on G. 

COROLLARY 2.1. The function 9 is continuous on E ( X ,  C) and on the interior 
o f  G. I f9  is continuous on G, then E ( X ,  C) is closed. 

PROPOSITION 2.4. Let x, x E G. 
(a) I f  Cx  >1 Cx, then g(x) ~ g(x). 
(b) I f  Cx  >. Cx and Cx ~ Cx, then g(x) < g(x). 

Proof. Let Cx >1 Cx. Then eTCx >~ eTCx and W ( x )  is a subset of W(x). 
Therefore 

g(x) = max eT C(w -- x) 

~< max eTC(w -- x) 

<. max eTC(w -- x) 

= 9 ( x ) .  

subject to w E W(x)  

subject to w E W(x)  

subject to w E W(x) 
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The proof is similar for (b) except that e T V x  > e T V x .  [] 

Remark 2.1. In view of Propositions 2.1 and 2.4, g(x) can be considered a measure- 
ment of the distance between x and E(X, C). For if x is efficient, then g(x) = 0; 
and if x E X is not efficient, then g(x) > 0. Moreover, g(x) is decreased by 
moving in a direction which dominates Cx (i.e. closer to the efficient set). 

In the case where X is a polytope, this concept is enhanced by the continuity 
of g. When X is only assumed to be compact and convex, the only possible 
discontinuities of g occur at those boundary points of G which are not efficient. 

3. Auxiliary Problems 

Two auxiliary problems to (P)  are now presented. The first is due to Benson. 
The second is motivated by Benon's result and the discussion in Section 2. This 
second problem will be used to provide the fundamental concepts for an algorithmic 
approach for solving (P). 

Let C + : R n --+ R k+l defined by C+x = (ClX , c 2 x , . . .  , CkX , qP(z ) )  T .  

(V +) VMAXC+x subject to x ~ X. 

Problem (V +) provides a necessary condition for a point to be an optimal solution 
for problem (P). This result was presented by Benson [5] in the special case when 
~o is a linear function. The proof given in [6] remains valid for an arbitrary function 
qo. 

PROPOSITION 3.1. If the point x* is an optimal solution to (P), then x* E 
E(X,C+). 

Remark 3.1. Some benefits of this result are given in [5]. One drawback to Propo- 
sition 3.1 occurs when E(X, C) is a subset of E(X, C+). In such cases the fact 
that x* E E(X, C +) provides no new information. 

The problem (V +) can be motivated by the desire to maximize the original k 
objectives and ~ simultaneously. The next problem considered is motivated by 
the desire to simultaneously reward increases in ~ and penalize being away from 
E(X, C). In other words, this problem is designed to attempt to maximize ~ and, 
at the same time, to minimize g, Benson's measurement function of Section 2. 

(V~) VMAX(~(x) , -g(x))  T subject to x EX.  

Let L(x) = (~(x), -g(x)) T. Then the efficient set for (V~) is E(X, L). 
Several properties of our auxiliary problem (V~) are now presented. These 

properties will culminate with a condition that is both necessary and sufficient for 
a point to be an optimal solution for the main problem (P). The next result shows 
that (V~) provides a necessary condition for locating optimal solutions of (P). 
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PROPOSITION 3.2. If the po&t x* is an optimal solution for (P), then x* E 
E(X,L) .  

Proof. Let x* be an optimal solution for (P). Then x* E E(X, C), and there- 
fore, g(x*) = O. Suppose that x* is not efficient for (V~). Then there exists a point 
x E X such that L(x) dominates L(x*). This implies that -g(x) >1 -g(x*) = O. 
By Proposition 2.1, 0 is the minimum of g on X.  Therefore g(x) ---- 0 and so 
x E E(X,C) .  This implies that ~(x) ~< ~(x*). Since g(x) = 0 = g(x*) and 
~(x) ~< ~o(x*), it follows that L(x) <~ L(x*), which is a contradiction. [] 

The next two propositions offer a comparison between (V~) and (V+). The first 
establishes that (V~) is at least as beneficial as (V+); the second shows that the 
difficulty discussed in Remark 3.1 is avoided by (V~). 

PROPOSITION 3.3. E(X,  L) C_ E(X,  C+). 
Proof Suppose that x E E(X, L) and that x is not efficient for (V+). Then 

there exists an x E X such that C+x dominates C+x. It suffices to consider two 
cases: either ~(x) > ~(x) and Cx >1 Cx, or ~(x) = ~(x) and Cx dominates Cx. 
In the second case, Proposition 2.4 (b) implies that - g (x )  > -g(x).  In either case, 
L(x) is dominated by L(x), which contradicts the assumption that x E E(X,  L). 

[] 

PROPOSITION 3.4. Let x E X. Then x is not efficient for (V~) if 

qo(x) < sups (x )  subjectto x E E(X,C) .  

Proof Assume that ~(x) < supT(x)  subject to x E E(X,C).  Then there 
exists an x E E(X,  C) such that ~o(x) < ~o(x). By Proposition 2.1, -g (x )  ~ 0 and 
g(x) = 0. Therefore L(x) is dominated by L(x), which implies x is not efficient 
for (V~). [] 

Now a characterization of the optimal solutions of (P) can be given. This charac- 
terization will be utilized to motivate an algorithmic approach for solving (P). 

THEOREM 3.1. The point x* is an optimal solution of(P) if and only if z* E 
E(X ,C)  ME(X,L).  

Proof The necessity is an immediate consequence of Proposition 3.2 and the 
definition of (P). Now assume that, x* E E(X,  C) fq E(X,  L). By Proposition 
3.4, ~(x*) /> ~(x) for all x E E(X, C). Since x* E E(X, C), it follows that 
qo(x*) = max~p(x), subject to x E E(X, C). That is, x* is an optimal solution of 
(P).  [] 

The full impact of the preceding results is best seen in the range space of L(x),  that 
is, L(X) = { ( ~ ( x ) , - # ( x ) )  T : z E X}.  Observe that the set of optimal solutions 
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for (P) all map to the same point, namely the point (~(x*), 0) T where x* is any 
optimal solution for (P). Let s* = (t*, 0). To solve (P)  it suffices to locate s*. By 
using the theory developed earlier in this paper, the graph of L (X) can be classified 
into two important cases, depicted in the Figures 1 and 2. 

It should be noted that it is easy to show that x* E E(X, C) N E(X, L) if and 
only if x* is an optimal solution to the reverse convex program 

sups (x )  subjectto g(x) << 0, x E X. 

Such programs are becoming a solvable set of problems in global optimization. 
See [16,17]. 

Proposition 2.1 shows that the image of E(X, C) under L is a subset of the 
horizontal axis in R 2 and that L(x) lies below the horizontal axis whenever z 
E(X, C). The image of E(X, L) forms the efficient set of L(X). Because L(X) is 
the range set, this image can be visualized as the set of points L(X) E L(X) such 
that L(X) N (L(x) + R 2+) = {L(x)}, where R 2+ is the first quadrant. Hence the 
image of E(X, L) is E(L(X), I2), which is denoted by E(L(X)). 

The desired result is to locate s* via E(X, L). The above diagrams are not 
intended to imply that E(L(X)) is connected or that L(X) is compact (although 
L(X) is bounded). Indeed, if there is no optimal solution for (P) then s* ~ L(X). 
In general, L(X) is not a convex set. Consequently, it is difficult to generate all of 
E ( L  (X)).  However, the following parametric programming problem does provide 
a sufficient condition for locating points in E(L(X)). This program can be used 
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to either solve or provide an approximate solution for (P). For a positive scalar A, 
define the problem 

(PA) m a x ( 1 , A ) ( ~ ( x ) , - g ( x ) )  z subject to x E X. 

Remark 3.2. Using Proposition 2.3, an optimal solution of (PA) is guaranteed to 
exist if X is a polytope. Numerical techniques for solving (PA) will be discussed 
in Section 5. 

PROPOSITION 3.5. [18]. Let A > 0 be given. I f  x is an optimal solution of (PA), 
then x E E(X ,  L). 

COROLLARY 3.1. I f  x is an optimal solution for (PA) for some A > 0 and 
g(x) = O, then x is an optimal solution of(P). 

Proof Assume that x is an optimal solution of (PA) for some A > 0 and that 
9(x) = 0. By Proposition 3.5, x E E(X,  L). By Proposition 2.1, x E E(X,  C). 
Therefore, Theorem 3.1 implies that x is an optimal solution of (P). [] 

Remark 3.3. There is a meaningful geometric interpretation of Proposition 3.5. Let 
x be an optimal solution to (PA) for some A > 0. Then there exists a supporting 
line for L(X)  which contains L(x).  Since (1, A) T > 0, this line separates L(X)  
and L(x) + R 2+. See Figure 3. Therefore, L(x) E E ( L ( X )  ). 

Notice that there is some A such that solving (PA) will locate s* in Figure 1. That 
is to say, a line with a positive normal can be drawn which contains s* but no 
other point of L(X) .  Observe that when the normal is vertical, the supporting line 
to L(X)  contains all of the image of E(X,  C). This fails to discern between the 
points of E(X ,  C). Hence the normal is required to be of the form (1, A) y with 
A > 0 .  

In the cases where L (X)  has a graph like Figure 2, (PA) cannot isolate s* 
because the only supporting line to L(X)  containing s* has a vertical normal. 
However, (PA) is still useful. The geometry suggests that if A is increased, the 
normal becomes more vertical and the supporting line to L(X)  becomes more 
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horizontal. Consequently, the point L(x)  E L ( X )  which (PA) locates will be 
closer to s*. This is proven in the next section. Hence, even if L ( X )  has the 
appearance of Figure 2, an approximate solution to (P) can be generated. 

In general, one cannot predict if the graph of L ( X )  will look like Figure l or 
Figure 2. However, by solving (PA) for larger and larger A, either (P)  is solved, 
or a reasonable approximation of t* is obtained. Corollary 3.1 can be used in this 
process to see if t* has been located. Theorem 4.1, in the next section, provides 
both an upper and lower bound for t*. 

4. Main Results 

In this section are presented three theorems relating the solutions of (PA) to the 
solution of (P). The first result provides an interval of approximation which is 
improved by increasing A. The other two results give conditions under which (PA) 
can be used to find the exact solution to (P). 

THEOREM 4.1. Let x be an optimal solution of  ( P A ). Let w E W(x) be such that 
g(x) = e T C (w  - x). Then ~(w) <, t* <, ~o(x) - ,kg(x). Moreover, if  A > ,k and x 
is an optimal solution of  (PA), then t* <, ~(x) - Ig(x)  <~ ~p(x) - ,kg(x). 

Proof. Suppose that x is an optimal solution of (PA) and that w E W(x) 
satisfies g(x) = eTC(w - x). Then w E E ( X ,  C) by Proposition 2.2. Therefore, 
~(w) <~ t*. By the definition of (P)0,  ~(x) - )~g(x) <~ ~p(x) - )~g(x) for all x E X. 
In particular, when x E E ( X ,  C), then 9(x) = 0. Therefore, qo(x) ~< p(x) - )~9(x) 
for all x E E ( X ,  C), and consequentially t* <, qa(x) - ),g(x). 

Now suppose that )~ > ), and that x is an optimal solution for (PA). Then, 
because x is optimal for (PA), 

(4.1) ~o(x)-  ,~g(x) ) ~p(x)-  ,kg(x). 

Since 9(x) ) 0 and A > ),, it follows that Ag(x) >1 Ag(z).  Hence - A g ( x )  >/ 
-Ag(x) .  Combining this with (4.1) yields ~(x) - Ag(x) >/ ~(x) - Ag(x) >/ 

[] 

Remark 4.1. Notice that (qo(x) - Ag(x), 0) is the point where the supporting line 
to L ( X )  intersects the horizontal axis. Hence, as A increases this intercept moves 
to the left. 

COROLLARY 4.1. Let A > A > 0 and assume that x and x are optimal solutions 
to (PA) and (P)~) respectively, l f~(x)  - ),9(x) = t*, then qo(x) = t*. 

Proof. By Theorem 4.1 it follows that t* <~ ~ ( x ) - A 9 ( x )  <~ ~(x)-)~g(x)  = t*. 
Hence ~(x) - Ag(x) = t*, which implies (1, A) (~ (x ) , -9 (x ) )  T = t*. Since 
(1, A)(t*, 0) T = t*, then the vector (~(x) - t * , - 9 ( x ) )  is orthogonal to (1, A). 
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This implies that for some scalar/3 >>. O, (~(x) - t * , - g ( x ) )  = /3(A,-1).  If 
g(x) > 0 then ~ > O. In this case, 

(1 ,  = (1 ,  - t* ,  + t* 

= (1, A)/3(A,-1) T + t* 

= - + t* 

> t*. 

This'contradicts the optimality of x for (PA). Therefore g(x) = 0, which implies 
= t * .  [ ]  

COROLLARY 4.2. Let g be continuous on X .  Let f(A) be the optimal value for 
(PA). Then lim;~__.~ f(A) = t*. 

Proof Since g is continuous on X, then f(A) exists for all A > 0. By Theorem 
4.1, f is nonincreasing in A. Therefore, it suffices to show that the sequence f (n ) ,  
where n = 1, 2, 3 , . . . ,  converges to t*. According to Theorem 4.1, this sequence is 
decreasing and bounded below by t*. Consequently, f (n )  converges to some real 
number m /> t*. By definition of f (n ) ,  there exists a sequence xn from X such 
that f (n )  = ~(xn) - ng(x~) for n = 1, 2, 3 , . . .  Since X is compact, there exists 
a convergent subsequence of x~, say xnk, which converges to x E X. By conti- 
nuity, ~(x~k) ~ ~(x) and g(Xnk) --'+ g(x). Since ~(Xn~) - nkg(x~k) has limit 
m, it follows that g(x) = O. Therefore, x E E ( X ,  C). Since ~ ( x ~ )  - nkg(xuk) 
decreases to m an nkg(x~k) >! O, it follows that ~(xnk) >1 m. Consequently, 
~(x) /> m /> t*. Since x E E ( X ,  C), then ~(x) ~< t*. Therefore, ~(x) = t*, 
which implies lim f (n )  = m = t*. [] 

Remark 4.2. In many applications the set {x E R '~ : Cx = 0} is multi-dimensional. 
Hence in Theorem 4.1, any w E {w E X : Cw = Cw} will satisfy g(x) = 
eTC(w -- x). Therefore, the left hand side of the approximation is difficult to con- 
trol. However, increasing A can only decrease the upper bound. Moreover, if x is an 
optimal solution of some (PA) and satisfies g(x) = 0, then t* has been found and 
x is an optimal solution to (P). In this case, solving (PA) for A > A will continue 
to yield optimal solutions of (P). Consequently, no A is too large. Conditions that 
guarantee such a A exists are presented next. 

Let coL(X)  denote the convex hull of L ( X )  and denote the efficient set of 
coL(X)  under the identity map by E(coL(X)) .  The I2 will also be suppressed 
when denoting the efficient set of coL(X) - R 2+ under the identity map. 

LEMMA 4.1. Let x * be an optimal solution of ( P ). Then s * = L ( x* ) is an efficient 
extreme point of  the convex hull of  L (X) .  

Proof Assume that x* is an optimal solution of (P). Suppose that s* 
E(coL(X) ) .  Then there is a point u E coL(X) such that u dominates s*. That is, 
there exists a finite convex combination of points in L ( X )  which dominates s*. 
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That is, there exists for 1 ~< j ~< re, the points xj E X and scalars c~j such that 
Otj >/ 0 ,  Oq n t- Ce 2 q-- �9 ' �9 q- O~m ---- 1 and u = o q L ( x l )  q- o~2L(x2 )  + ' "  q- ~,~L(xm). 
Assume, without loss of generality, that (~j > 0 for 1 ~< j ~< re. Now con- 
sider u = c~lL(xl) + "" + ~mL(xm),  which dominates s* = (t*,O) T. From 
the second component of this equation it follows that -[c~19(xl) + o~29(x2) + 
. . .  + ~mg(Xm)] ) O. Because c U > 0 and g(xj) ) 0 for 1 ~< j ~< m, it fol- 
lows that 0 >/ - [ oqg (x l )  + ~29(x2) + " "  + ~mg(Xm)] >>- O. This implies that 
o q g ( x l )  + o l 2 g ( x 2 )  + " ' "  -t- OZmg(Xm) = 0. Since c U > 0 and g(xj) >>. 0 for 
1 ~< j ~< m, t heng(x j )  = 0 f o r  1 ~< j ~< m. Therefore, xj E E ( X , C )  and 
consequently ~(xj)  <~ t* for 1 ~< j <~ m. This fact and the assumption that s* ~< u 

imply that 

t* ~ OQqP(Z1) + O~2qO(X2) -'}- " "" q- OLm~(Xm) 

(Oq -t- Ce2 q - ' ' "  "+" Otto)t* = t* .  

Since o~j > 0 and ~(xj) <~ t* for 1 ~< j ~< m, it follows that qo(xj) = t* for 
1 ~< j ~< re. This implies that u = s*. Therefore s* E E(coL(X) ) .  

Now assume that s* is not an extreme point of coL(X) .  Then there exists the 
points u, v E coL(X)  such that u ~ s*, v 7~ s* and s* = c~u + (1 - a )v  for 
some 0 < o~ < 1. Let u = (Ul,U2) T and v = (Vl,V2) T. It was shown above 
that u2 ~< 0 and v2 ~< 0. Therefore, 0 = c~u2 + (1 - a)v2 ~< 0 with equality 
occurring if and only if u2 = v2 = 0 since 0 < o~ < 1. Combining this fact 
with the knowledge that s* E E(coL(X) )  gives ul ~< t* and Vl ~< t*. Therefore 
t* : O~Ztl d- (1 - o~)vl  ~< ozt* -t- (1 - o 0 t *  : t* .  Once again, 0 < c~ < 1 implies 
that ul = vl = t*. Therefore u = v = s*. Hence s* is an extreme point of coL(X) .  

[] 

THEOREM 4.2. Let X be a polytope. Suppose that ~o is a convex function on X .  
Then there exists a k, > 0 such that for all A > A, if x* is an optimal solution of 
(PA), then x* is an optimal solution of(P).  

Proof. The assumption that X is a polytope guarantees that (P)  has an optimal 
solution and that 9 is continuous. Hence (PA) has an optimal solution for all 
A > 0. Moreover, L is continuous, which implies that L ( X )  is compact. This 
in turn guarantees that coL(X)  is compact [19, p. 158]. Consequently, the set 
coL(X)  - R 2+ is a closed convex set [19, p. 75]. Therefore, coL(X)  - R 2+ is the 
intersection of the closed half-spaces which contain it [19, p. 99]. 

We claim that coL(X)  - / / 2 +  is a polyhedron. The details of this are rather 
lengthy (see [14]). To see this note that by the above arguments it suffices to show 
that coL(X)  - R 2+ has finitely many distinct exposed faces [19, p. 162]. 

Let F denote such a face of coL(X)  - R 2 + .  Then for some scalars cq and ~ 2 ,  

F is the optimal solution set of max(~l,  c~2) �9 v subject to v E coL(X)  - R 2 + .  

Since - i  and - j  are feasible directions from any u E coL(X)  - R 2 + ,  then ~l >/0 
and o~ 2 >/0. Therefore, (tXl, ~2) T/> 0, and it suffices to show that there are finitely 
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many exposed faces corresponding to normals of the form (1, A) T, where A > 0. 
Now, let A > 0 and consider 

(4.2) max(1,A),  u subject to u E coL(X) .  

By the compactness of L(X), the maximum is achieved, say at u*. Suppose there 
exists v E c o L ( X ) - R  2+ such that ( 1 , A ) . v  > ( 1 , A ) . u * .  Then for some 
(/31,/32) r E R 2+ and some u E coL(X) ,  v = u - (/31, ~ ) r .  Consequently, 

(1,A).  u* < (1,A).  v = (1, A). u -  fll -/32A ~< (1,A).  u. 

This contradicts the optimality of u* for (4.2). Since u* E coL(X)  - R 2+, then 
(1, A) �9 u* = max(l ,  A) �9 v subject to v E coL(X)  - R 2+. Therefore, the optimal 
solutions to (4.2) form a subset of F .  By the compactness of coL(X) ,  the solutions 
to (4.2) contain an extreme point of coL(X) ,  which in turn is an extreme point of 
L(X) [19, p. 65]. Therefore, 

max(l ,  A). v subject to v E coL(X)  - R 2+ 

= max(l,  A). u subject to u E coL(X)  

= max(1,A),  s subject to s E L(X) 

= max ~(x) - Ag(x) subject to x E X. 

Since g is concave, A > 0 and ~p is convex, it follows that ~p - Ag is convex [19, 
p. 33]. Consequently the value 

max qo(x) - Ag(x) subject to x E X 

is attained at an extreme point of X [19, p. 345]. The image of this extreme point 
lies on F .  Hence each exposed face of coL(X)  - R e+ with a positive normal 
contains the image of an extreme point of X.  Because L(X) C_ R 2, any point in 
coL(X)  - R 2+ can lie on at most 3 exposed faces (a point, 2 lines). Hence the 
number of exposed faces of coL(X)  - R 2+ with a positive normal is less than 3 
times the number of vertices of X.  Since X is a polytope, X has finitely many 
vertices. This establishes that coL(X)  - R 2+ is a polyhedron. 

Now let x* be an optimal solution to (P). By Lemma 4.1, s* = (~(x*), 0) 7, E 
E(coL(X)) and consequently s* E E(coL(X) - R 2+) [18]. Since coL(X)  - R 2+ 
is a polyhedron, there exists a A > 0 such that 

(1, A) .s*  = max(1 ,A) .v  subject to v E c o L ( X ) - R  2+ 

= max ~p(z) - Ag(x) subject to x E X. 

The proof is completed by applying Remark 4.2 and Corollary 4.1. [] 

Remark 4.3. Bolintineanu [11] has shown that under the assumptions of Theorem 
4.2 problem (P)  has an extreme point optimal solution. In particular, Bolintineanu 
showed that the minimum of a quasi-concave function over the efficient set of 
a multiple objective linear program with bounded feasible region occurs at an 
extreme point of the feasible region. 
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Remark 4.4. To apply Theorem 4.2, (PA) is solved for some large A. Ifg(x*) = 0, 
then an optimal solution to (P)  has been found. If not, then A is increased and the 
process repeated. If ~ is not convex or if X is not a polytope, then the conclusion 
of Theorem 4.2 cannot be guaranteed. In particular, the algorithm need not be finite 
and the supremum in (P)  need not be attained. 

EXAMPLE 4.1. Consider the nonpolytope 

S =- {s = (x, y, Z) T E R 3 : 8 ) O, X 2 + y2 + Z 2 ~ 1 }. 

Let Cs = (x, y)T. Then 

E ( S , C )  = {s E S : x 2 + y2 = 1, z = 0}. 

Setting ~(s)  -- z it is immediate that 

0 = m a x , ( s )  subject to s e E ( S , C )  

In this case 

T 

g ( s ) =  x / 1 - x  2 - y  if x > - -  ~/~ 
2 

vq-y2-x ify>V  
2 

Given A > 0, the optimal solution to (PA) is given by x = y = A/x/1 + 2A 2, 
z = l /x /1  + 2A 2, which yields the positive optimal value of 

X / I + 2 A  2 -  2 V ~  for (PA). 

EXAMPLE 4.2. Let S be the square in R 2 determined by {s = (x, y)T : _ 1 ~< 
x ~ 0 , 0  ~< y ~< 1} a n d e s  = (x + y , x - y )  T. T h e n E ( S , C )  = {s E S : x  = 0 }  
and g(s) = - 2 x .  Let ~(s) = -3xU3,  which is not convex on S. Then 

0 = max ~o(s) subject to s E E(S ,  C). 

Given A > 1/2, the optimal solutions to (PA) occur when x = - (2A) -U2 ,  
0 ~< y ~< 1. These solutions yield the positive optimal value of V~/A for (PA). 
If A ~< 1/2 then the optimal solutions to (PA) occur at x = - 1  with the positive 
objective 3 - 2A. 

The following theorem gives a condition for which the program (P)0  only needs 
to be solved for one value of A. The sup norm of a vector x is denoted by II z l[ ~ .  
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LEMMA 4.2. Let Cw >. Cx. Then for any a E R k, 

I c ~ r C ( w - ~ ) l  < I I ~ l l ~ T c ( w - x ) .  

Proof. Let a E R k and assume Cw ) Cx. Let/3 = Cw - Cx. Note/3 ) 0. 
Therefore 

I J C ( w  - ~)1 = 

~< 

~< 

I~r/31 

1~1/31 -t- c~2/32 + . . .  -t- ~k/3kl 

lal/31l + 1a2/321 + . . .  + [ak/3kl 

[a11/31 + 1~21/32 + . . .  + 1~1/3~ 
max laiI(/31 +/32 + . . .  +/3k) for 1 ~< i ~< k 

11~11~(/31 +/32 + , . .  +/3k) 
II~ll~er/3 
II~ll~e TC(w - x), [] 

THEOREM 4.3. Suppose that ~(x) = c~T Cx for some a E R k and let A > IIc~ll~, 
Then x* is an optimal solution for (P) if and only if x* is an optimal solution for 
(PA). 

Proof Assume that x* is an optimal solution for (P). Then x* C E(X ,  C), 
which implies 9(x*) = 0. Therefore, ~(x*) - Ag(x*) = aTCz  *. Let x C X. If 
aTCx <<, aTCx*, then since A > 0 and 9(x) >1 O, it follows that 

If ceTCx > o~TCx *, then x ~ E(X ,  C). Let w E W(x)  satisfy g(x) = eTC(w - 
x). Since x r E (X ,  C), g(x) > 0. SinceA > []al[ ~ and g(x) > 0, it follows 
that Iicel[~eT C(w - x) < AeT C(w - x). Hence by Lemma 4.2, AeT C(w - x) > 
Ic~ T C(w - x)l. Therefore 

~(x)  - Aa(~) = ~ r c x  - ~ c ( w  - x) 

< ~ r  c ~  - I ~ C ( w  - ~)1 
<~ o~TCx -- a r c x  + o~TCw 

= o~TCw. 

By Proposition 2.2, w E E ( X , C ) .  Therefore ~(x) - Ag(x) < ~TCw << 
~TCx*. Hence aTCx* is the maximal value of (PA) and x* is an optimal solution 
for (PA). 

Now assume that x* is an optimal solution of (PA). By Proposition 3.5, x* E 
E(X ,  L). Hence by Theorem 3.1, it suffices to show that x* E E (X ,  C). To show 
this suppose that x* ~ E (X ,  C). Let w E W(x*) satisfy g(x*) = eTC(w -- x*). 
By Proposition 2.1, 9(x*) > 0. Since A > ][a[]~ and 9(x*) > 0 it follows 
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that I I ~ l l ~ e T g ( ~  - x*) < AeTC(~ - x*). Applying Lemma 4.2, it fol lows that 
laTg(w - x*)l < AeTC(w - x*). Hence 

~(~*) - ~g(~*) = ~ r c ~ *  _ ~ e r c ( w  - **) 

< ~ r c ~ * -  I ~ r C ( w -  **)1 
o~T c x  * -[- o~T C ( w  -- X * ) = o~T C w ,  

However, by Propositions 2.1 and 2.2, g(w) = 0. Hence ~(w) - Ag(w) = 
o~TCw > ~(x*) - Ag(x*), which contradicts the optimality of x* for (PA). There- 
fore x* e E(X ,  C). [] 

Remark 4.5. If a ) 0 in Theorem 4.3, then E(X,  C) = E(X ,  C+). Consequently, 
(P) can be reduced to the convex program 

(Pc) max ~(x) subject to x E X. 

If o~ > 0, then the solutions to (P) and (Pc) coincide. If some component of c~ 
is zero, then the solutions of (Pc) need not be a subset of E(X,  C). However, an 
optimal solution to (P) can be found by using lexigraphical maximization where 
~(x) is maximized first. See [3] for a similar result. 

Remark 4.6. To solve (Pi) for some 1 ~< i ~< k, let p(x)  = -eix .  The optimal 
solution set for (P~) can be generated by solving the corresponding (PA) for any 
A > I .  

Remark 4. 7. Since X is allowed to be any compact convex set in Theorem 4.3, 
an optimal solution is not guaranteed to exist. (See [15].) If A ~< I1~11o~, then it is 
possible that an optimal solution of (PA) is not an optimal solution for (P), as the 
next example demonstrates. 

EXAMPLE 4.3. Let X be the convex hull of the four points ( -  1, 2), (0, 2), ( 1, 0) 
and ( - 1 , 0 ) .  Let C = / 2 .  Then E(X,  C) is the line segment from (0, 2) to (1, 0) 
and 

g(x) = { 2 -  Xl - X2 i f x l ~ < 0 }  
2 - 2 X l - X 2  if xl > 0  

Consider the problem (P1) which is to minimize Xl subject to x C E(X,  C). This 
minimum is 0 and is achieved at (0, 2). The function corresponding to (PA) is 

{ (A- -1 )x ,  + (x2--2)A i fx l  ~<0} 
f ( x l , x2 ,  A)= ( 2 A - 1 ) x l + ( x 2 - 2 ) A  i fx l  > 0  

which yields f (0 ,  2, A) = 0 and f ( - 1 ,  2, A) = 1 - ~. Consequently, a sufficient 
condition for (PA) to have only efficient solutions is that k > 1. 
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Remark 4.8. If a decision maker is interested in optimizing a continuous function 
h over the set of efficient outcomes, the problem can be posed in domain space as 

suph(Cx)  subject to x e E ( X ,  C).  

When h is linear, this problem falls into the category of Theorem 4.3 or Remark 
4.5. If h is convex, then h C  is convex [19, p. 38]. Consequently, Theorem 4.2 is 
applicable whenever X is a polytope. Numerical aspects of these cases are given 
in the following section. 

5. Numerical Techniques 

In this section are discussed some of the numerical options when X is a polytope 
and ~ is a convex function on R n. The numerical aspects of general nonlinear 
functions ~ will be developed in later research. 

Remark 5.1. Under the assumptions that X is a polytope and ~ is a convex function, 
(PA) has a solution for each A > 0 and Theorem 4.2 is applicable. For each A, (PA) 
is a nonconvex programming problem involving the maximization of a continuous, 
convex function over a polytope. This problem has received considerable attention 
in the last twenty years and is a topic of ongoing research. Further discussion and 
an extensive bibliography can be found in [16]. An extensive survey article on 
concave minimization has been written by Benson [20]. 

Let X = {x E R~IAz <. b, z >1 0}. Then by taking the dual of the linear program 
which defines g, it follows that 

g(x)  = - max e T C x  + p T C x  -- uTb 

subject to uT A -- pT C >>. eT C 

p , u ) O .  

This form of g has the advantage of a consistent constraint set instead of one which 
is dependent upon x. Using the above representation of g results in at the following 
program 

(DA) max ~o(x) + Af(x)  subject to A x  <<. b, x >>. 0 

where 

f ( x )  = max e T C x  + p T C x  -- uTb 

subject to uT A -- p r  C ) eT C 

p , u ) O .  
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Remark 5.2. The function f = - g  is a continuous, piecewise linear, convex func- 
tion on X.  Therefore, solving (DA) in this form is once again a problem of maxi- 
mizing a convex function over a polyhedron. It should be noted that the constraints 
involving the variables p and u need not form a bounded set. 

The following theorem phrases the results of Section 4 in terms of the problem 
(D). 

THEOREM 5.1. Let ~ be a convex function on R n, and X = {rc E R~IAx <<. 
b, x >/0}. Then the following are valid. 

(i) I f(x*,  p, u) is an optimal solution of  (D )~) and eT c x  * + pT Cx* -- uT b = O, 
then x* is an optimal solution for program (P). 

(ii) There exists a A > 0 such that for all A > A, if (z*,p, u) is an optimal 
solution for (DA), then x* is an optimal solution for (P). 

(iii) In the case where qa : aT Cx for some a E R k and A > II~ll~, if (x*,p, u) 
is an optimal solution of  (D A), then x* is an optimal solution for program (P). 

When ~(x)  = afrx for  some d E R r~, then (DA) may be solved using the 
following program 

(DA-linear) maxdTx + A(eTCx q-pTCx -- uTb) 

subjectto Ax  <<. b, u T A - - p T C  >>, eTc,  x , p , u  >>, O. 

Remark 5.3. The preceding problem is known as a bilinear programming problem. 
This type of problem has also received much attention in recent years [16]. 
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